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Abstract

We present a proof of the infinite product representation of the generating function for ordinary
partitions due to L. Euler in 1748 [6]; a partly new proof of the infinite product representation of the
generating function for plane partitions due to P. A. MacMahon in 1916 [8]; a disproof of MacMahon’s
conjectured infinite product representation of the generating function for higher dimensional partitions
due to A. O. L. Atkin, P. Bratley, I. G. Macdonald, and J. K. S. McKay in 1967 [2]; and a proof of
the asymptotics of higher dimensional partitions due to D. P. Bhatia, M. A. Prasad, and D. Arora in
1997 [4], which matches with the asymptotics predicted by MacMahon’s conjecture.
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1 Ordinary Partitions

An ordinary partition of n is a non-increasing list of positive integers whose sum is n; here, the number of
ordinary partitions of n is denoted p1(n). For example, p1(4) = 5 because there are five ordinary partitions
of 4, namely (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1). The sequence of values taken on by p1(n), starting
with p1(0) = 1 for convenience, begins 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, . . . . The generating function
of this sequence is defined as the formal power series

∑∞
n=0 p1(n)qn. Questions of convergence will not be

discussed here, except to say that q can be thought of as a complex variable with |q| < 1. There is an infinite
product representation of this generating function, which appeared at least as early as L. Euler’s 1748 book
Introductio in Analysin Infinitorum [6].

1.1 Theorem. Formally,
∞∑
n=0

p1(n)qn =

∞∏
m=1

1

1− qm
.

Proof. Expand each factor of the infinite product into a geometric series:

∞∏
m=1

1

1− qm
=

1

1− q
· 1

1− q2
· 1

1− q3
· 1

1− q4
· · · ·

=
(

1 + q + q2 + q3 + q4 + · · ·
)

·
(

1 + q2 + q2·2 + q3·2 + q4·2 + · · ·
)

·
(

1 + q3 + q2·3 + q3·3 + q4·3 + · · ·
)

·
(

1 + q4 + q2·4 + q3·4 + q4·4 + · · ·
)
· · · · .

Now imagine multiplying out this infinite product. For example, one resulting term comes from taking q2

from the first two factors and a 1 from all the remaining factors; thus, q2 · q2 = q4. In this way, each term
that results from the expansion can be interpreted as an ordinary partition of some number. The term taken
from the first factor gives the number of 1s in the ordinary partition; the term taken from the second factor
gives the number of 2s in the ordinary partition; and so on. Thus, q4 will appear precisely once for every
ordinary partition of 4, and so its coefficient in the fully expanded series will be p1(4) = 5. Note that p1(0)
needs to be defined as 1 for the infinite product to give the right constant term.
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2 Plane Partitions

A plane partition of n is a two-dimensional array of positive integers whose sum is n, such that the array is
non-increasing in both directions; here, the number of plane partitions of n is denoted p2(n). For example,
p2(4) = 13 because there are thirteen plane partitions of 4, namely(

4
)
,

(
3
1

)
,

(
3 1

)
,

(
2
2

)
,

(
2 2

)
,

2
1
1

 ,

2 1
1

 ,

2 1 1
 ,


1
1
1
1

 ,


1 1
1
1

 ,


1 1
1 1

 ,


1 1 1
1

 , and


1 1 1 1

 .

The sequence of values taken on by p2(n), starting with p2(0) = 1 for convenience, begins 1, 1, 3, 6, 13, 24,
48, 86, 160, 282, 500, 859, 1479, . . . . The generating function of this sequence is defined as the formal power
series

∑∞
n=0 p2(n)qn, and there is also an infinite product representation of this generating function, which

appeared at least as early as P. A. MacMahon’s 1916 book Combinatory Analysis [8].

2.1 Theorem. Formally,
∞∑
n=0

p2(n)qn =

∞∏
m=1

1

(1− qm)m
.

The proof of this theorem is much more complicated than the previous one. We mostly follow the method
presented in G. E. Andrews’ 1976 book The Theory of Partitions [1]. The main difference is Lemma 2.10,
where we present a new and more natural method suggested by G. E. Andrews. Also, the presentation of
Lemmas 2.5 and 2.6 benefited from talks with A. J. Yee.

2.2 Definition. The q-Pochhammer symbol is defined as follows:

(a)n = (a; q)n =

n∏
j=1

(1− aqj−1)

(a)∞ = (a; q)∞ =

∞∏
j=1

(1− aqj−1)

(a)0 = (a; q)0 = 1.

In turn, the q-binomial coefficient is defined as[
n

k

]
=

(q)n
(q)k(q)n−k

when 0 ≤ m ≤ n, and 0 otherwise.
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2.3 Lemma. For all nonnegative integers n and m,[
n

m

]
=

[
n− 1

m

]
+ qn−m

[
n− 1

m− 1

]
.

Proof. Expand the right-hand side and combine the resulting fractions:[
n− 1

m

]
+ qn−m

[
n− 1

m− 1

]
=

(q)n−1
(q)m(q)n−m−1

+ qn−m
(q)n−1

(q)m−1(q)n−m

=
(q)n−1(1− qn−m) + qn−m(q)n−1(1− qm)

(q)m(q)n−m

=
(q)n−1(1− qn−m + qn−m − qn)

(q)m(q)n−m

=
(q)n−1(1− qn)

(q)m(q)n−m

=
(q)n

(q)m(q)n−m

=

[
n

m

]
.

2.4 Lemma. For all nonnegative integers n and m,[
n+m+ 1

m+ 1

]
=

n∑
j=0

[
m+ j

m

]
qj .

Proof. Induction on n. For the base case, simply note that if n = 0, then the equation reduces to 1 = 1. For
the inductive step, suppose that the equation holds for a specific value of n, and consider[

n+m+ 2

m+ 1

]
.

Invoking Lemma 2.3 with n and m respectively replaced by n+m+ 2 and m+ 1, this can be expanded as[
n+m+ 2

m+ 1

]
=

[
n+m+ 1

m+ 1

]
+ qn+1

[
n+m+ 1

m

]
.

Now by the inductive hypothesis, the first term can be replaced with a sum like so:[
n+m+ 2

m+ 1

]
=

n∑
j=0

[
m+ j

m

]
qj + qn+1

[
n+m+ 1

m

]
,

and conveniently, the extra term is precisely the one needed to complete the sum and prove the lemma.
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2.5 Lemma. For all nonnegative integers a, b, c, and d,

b∑
j=d

[
a+ j

c

]
qj = qc−a

([
a+ b+ 1

c+ 1

]
−
[
a+ d

c+ 1

])
.

Proof. Start with the left-hand side, and add and subtract c in the top entry of the q-binomial coefficient:

b∑
j=d

[
a+ j

c

]
qj =

b∑
j=d

[
c+ (a− c+ j)

c

]
qj .

Re-index with k = a− c+ j:

=

a−c+b∑
k=a−c+d

[
c+ k

c

]
qc−a+k

= qc−a
a−c+b∑

k=a−c+d

[
c+ k

c

]
qk.

Complete the sum so that it starts from k = 0:

= qc−a

a−c+b∑
k=0

[
c+ k

c

]
qk −

a−c+d−1∑
k=0

[
c+ k

c

]
qk

 .

Lastly, apply Lemma 2.4 to each sum:

= qc−a

([
a+ b+ 1

c+ 1

]
−
[
a+ d

c+ 1

])
.
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2.6 Lemma. Let πr(n1, . . . , nk; q) denote the generating function for plane partitions with at most r
columns, at most k rows, and with ni the first entry in the ith row. Then,

πr(n1, . . . , nk; q) = qn1+···+nk det

(
q(i−j)(i−j−1)/2

[
nj + r − 1

r − i+ j − 1

])
1≤i,j≤k

.

Proof. Induction on r. For the base case r = 1, note that the q-binomial coefficient in the determinant is

[
nj
j − i

]
=


0 if i < j

1 if i = j[
nj

j−i
]

if i > j.

Thus, the matrix is upper triangular with 1s on the diagonal, and so its determinant is 1. Thus, the claim
for the base case is that

π1(n1, . . . , nk; q) = qn1+···+nk ,

which is true because there is only one plane partition with at most 1 column and with that column fully
specified.

For the inductive step, suppose that the claim holds for a particular r ≥ 1. We need to express
πr+1(n1, . . . , nk; q) in terms of πr(m1, . . . ,mk; q). This can be done by separating out the contribution
from the first column, and then summing over all possible second columns:

πr+1(n1, . . . , nk; q) = qn1+···+nk

nk∑
mk=0

nk−1∑
mk−1=mk

· · ·
n1∑

m1=m2

πr(m1, . . . ,mk; q).

Plugging in the inductive hypothesis to this gives

πr+1(n1, . . . , nk; q)

= qn1+···+nk

nk∑
mk=0

nk−1∑
mk−1=mk

· · ·
n1∑

m1=m2

qm1+···+mk det

(
q(i−j)(i−j−1)/2

[
mj + r − 1

r − i+ j − 1

])
1≤i,j≤k

= qn1+···+nk

nk∑
mk=0

qmk

nk−1∑
mk−1=mk

qmk−1 · · ·
n1∑

m1=m2

qm1 det

(
q(

i−j
2 )
[
mj + r − 1

r − i+ j − 1

])
1≤i,j≤k

.

For convenience, define

A =

(
q(

i−j
2 )
[
mj + r − 1

r − i+ j − 1

])
1≤i,j≤k

.

Now look at the innermost summation and expand the determinant along the first column:

n1∑
m1=m2

qm1 det(A) =

n1∑
m1=m2

qm1

k∑
i=1

q(
i−1
2 )
[
m1 + r − 1

r − i

]
A∗i,1.

Here, A∗i,1 is the so-called cofactor; that is, (−1)i+1 times the (k − 1) × (k − 1)-matrix obtained from the
original matrix by removing the i-th row and first column. Now interchange the order of summation to
obtain:

k∑
i=1

q(
i−1
2 )

 n1∑
m1=m2

qm1

[
m1 + r − 1

r − i

]A∗i,1.
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By Lemma 2.5, the inner sum can be evaluated as follows:

n1∑
m1=m2

qm1

[
m1 + r − 1

r − i

]
= q1−i

([
n1 + r

r − i+ 1

]
−
[
m2 + r − 1

r − i+ 1

])
.

Now we can un-expand the determinant along the first column and obtain

πr+1(n1, . . . , nk; q) = qn1+···+nk

nk∑
mk=0

qmk

nk−1∑
mk−1=mk

qmk−1 · · ·
n2∑

m2=m3

qm2 det(B)

where B is the same as the original matrix(
q(

i−j
2 )
[
mj + r − 1

r − i+ j − 1

])
1≤i,j≤k

except the first column is now replaced with

q(
i−1
2 )q1−i

([
n1 + r

r − i+ 1

]
−
[
m2 + r − 1

r − i+ 1

])
= q(i−1)(i−4)/2

([
n1 + r

r − i+ 1

]
−
[
m2 + r − 1

r − i+ 1

])
.

To clean this up, we perform the following column operation, which of course does not affect the value of
the determinant. Add q−1 times the second column to the first column. This cancels out the second term
in the entries in the first column, leaving only

q(i−1)(i−4)/2
[
n1 + r

r − i+ 1

]
.

Thus,

πr+1(n1, . . . , nk; q) = qn1+···+nk

nk∑
mk=0

qmk

nk−1∑
mk−1=mk

qmk−1 · · ·
n2∑

m2=m3

qm2 det(C)

where

Ci,j =


q(i−1)(i−4)/2

[
n1 + r

r − i+ 1

]
if j = 1

q(
i−j
2 )
[
mj + r − 1

r − i+ j − 1

]
if j ≥ 2.

Next, repeat the whole process for the new innermost summation. This time, expand det(C) along the
second column, interchange the order of summation, apply Lemma 2.5, and then un-expand the determinant
with a new matrix D:

n2∑
m2=m3

qm2 det(C) =

n2∑
m2=m3

qm2

k∑
i=1

q(
i−2
2 )
[
m2 + r − 1

r − i+ 1

]
C∗i,2

=

k∑
i=1

q(
i−2
2 )

 n2∑
m2=m3

qm2

[
m2 + r − 1

r − i+ 1

]C∗i,2

=

k∑
i=1

q(
i−2
2 )q2−i

([
n2 + r

r − i+ 2

]
−
[
m3 + r − 1

r − i+ 2

])
C∗i,2

= det(D),
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where D is the same as C except the second column is now replaced with

q(
i−2
2 )q2−i

([
n2 + r

r − i+ 2

]
−
[
m3 + r − 1

r − i+ 2

])
= q(i−2)(i−5)/2

([
n2 + r

r − i+ 2

]
−
[
m3 + r − 1

r − i+ 2

])

This time for clean up, add q−1 times the third column to the second column, leaving only

q(i−2)(i−5)/2
[
n2 + r

r − i+ 2

]
.

Thus,

πr+1(n1, . . . , nk; q) = qn1+···+nk

nk∑
mk=0

qmk

nk−1∑
mk−1=mk

qmk−1 · · ·
n3∑

m3=m4

qm3 det(E)

where

Ei,j =


q(i−j)(i−j−3)/2

[
nj + r

r − i+ j

]
if j ≤ 2

q(
i−j
2 )
[
mj + r − 1

r − i+ j − 1

]
if j ≥ 3.

Repeating this process k − 3 more times shows that

πr+1(n1, . . . , nk; q) = qn1+···+nk

nk∑
mk=0

qmk det(X)

where

Xi,j =


q(i−j)(i−j−3)/2

[
nj + r

r − i+ j

]
if j ≤ k − 1

q(
i−j
2 )
[
mj + r − 1

r − i+ j − 1

]
if j = k.

We repeat the process one last time, but this time it is slightly different because the summation begins
at mk = 0 rather than mk = mk+1. So, expand det(X) along the last column, interchange the order of
summation, apply Lemma 2.5, and then un-expand the determinant with a new matrix Y :

nk∑
mk=0

qmk det(X) =

nk∑
mk=0

qmk

k∑
i=1

q(
i−k
2 )
[
mk + r − 1

r − i+ k − 1

]
X∗i,k

=

k∑
i=1

q(
i−k
2 )

 nk∑
mk=0

qmk

[
mk + r − 1

r − i+ k − 1

]X∗i,k

=

k∑
i=1

q(
i−k
2 )qk−i

([
nk + r

r − i+ k

]
−
[

r − 1

r − i+ k

])
X∗i,k

=

k∑
i=1

q(
i−k
2 )qk−i

[
nk + r

r − i+ k

]
X∗i,k

=

k∑
i=1

q(i−k)(i−k−3)/2
[
nk + r

r − i+ k

]
X∗i,k

= det(Y ),
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where

Yi,j = q(i−j)(i−j−3)/2
[
nj + r

r − i+ j

]
.

This time there is no clean up required because
[
r−1
r−i+k

]
= 0.

Thus,
πr+1(n1, . . . , nk; q) = qn1+···+nk det(Y ).

This is not quite the claim yet, though. We define a new matrix Z, which is obtained from Y by multiplying
the ith row by qi and dividing the jth column by qj . Note that det(Z) = det(Y ), and the new matrix has
entries

Zi,j = q(i−j)(i−j−3)/2+(i−j)
[
nj + r

r − i+ j

]
= q(i−j)(i−j−3)/2+2(i−j)/2

[
nj + r

r − i+ j

]
= q(i−j)(i−j−3+2)/2

[
nj + r

r − i+ j

]
= q(i−j)(i−j−1)/2

[
nj + r

r − i+ j

]
.

Hence,
πr+1(n1, . . . , nk; q) = qn1+···+nk det(Z),

and Z has the claimed form.

2.7 Lemma. For all nonnegative integers B and t,

(A)B−t =
(A)B

(−1)tAtqBt−(t+1
2 )(q1−B/A)t

.

Proof. Multiply and divide the left-hand side by (AqB−t)t to complete the product:

(A)B−t =
(A)B−t(Aq

B−t)t
(AqB−t)t

=
(A)B

(AqB−t)t
.

Now flip the product in the denominator:

=
(A)B

(1−AqB−t)(1−AqB−t+1) · · · (1−AqB−1)

=
(A)B

(−AqB−t)(1− qt−B/A)(−AqB−t+1)(1− qt−B−1/A) · · · (−AqB−1)(1− q1−B/A)

=
(A)B

(−1)tAtqBt−(1+2+···+t)(1− qt−B/A)(1− qt−B−1/A) · · · (1− q1−B/A)

=
(A)B

(−1)tAtqBt−(t+1
2 )(q1−B/A)t

.
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2.8 Definition. We will encounter the following type of q-hypergeometric series:

3φ2

(
a1 a2 a3

b1 b2
; q, z

)
=

∞∑
t=0

(a0; q)t(a1; q)t(a2; q)t
(q; q)t(b1; q)t(b2; q)t

zt.

2.9 Lemma. For all nonnegative integers n,

3φ2

(
q−n a b

c q1−nab/c
; q, q

)
=

(c/a)n(c/b)n
(c)n(c/ab)n

.

This result is known as the q-Pfaff–Saalschutz summation.

Proof. Label the left-hand side Sn(a, b, c) and the right-hand side as Tn(a, b, c). First note that when n = 0,
both are clearly equal to 1. Now consider the difference Sn(a, b, c)− Sn−1(a, b, c)

Sn(a, b, c)− Sn−1(a, b, c) = 3φ2

(
q−n a b

c q1−nab/c
; q, q

)
− 3φ2

(
q1−n a b

c q2−nab/c
; q, q

)

=

∞∑
t=0

(q−n)t(a)t(b)t
(q)t(c)t(q1−nab/c)t

qt −
∞∑
t=0

(q1−n)t(a)t(b)t
(q)t(c)t(q2−nab/c)t

qt

=

∞∑
t=1

(a)t(b)t
(q)t(c)t

(
(q−n)t

(q1−nab/c)t
− (q1−n)t

(q2−nab/c)t

)
qt

=

∞∑
t=1

(a)t(b)t
(q)t(c)t

(
(q−n)t(1− q1−n+tab/c)

(q1−nab/c)t+1
− (q1−n)t(1− q1−nab/c)

(q1−nab/c)t+1

)
qt

=

∞∑
t=1

(a)t(b)t
(q)t(c)t

(
(q1−n)t−1

(
(1− q−n)(1− q1−n+tab/c)− (1− qt−n)(1− q1−nab/c)

)
(q1−nab/c)t+1

)
qt

=

∞∑
t=1

(a)t(b)t(q
1−n)t−1

(q)t(c)t(q1−nab/c)t+1

(
(1− q−n)(1− q1−n+tab/c)− (1− qt−n)(1− q1−nab/c)

)
qt

=

∞∑
t=1

(a)t(b)t(q
1−n)t−1

(q)t(c)t(q1−nab/c)t+1
(1− qt)(q1−nab/c− q−n)qt

=

∞∑
t=1

(a)t(b)t(q
1−n)t−1

(q)t−1(c)t(q1−nab/c)t+1
q−n(qab/c− 1)qt

Reindex so that the summation begins at t = 0:

=

∞∑
t=0

(a)t+1(b)t+1(q1−n)t
(q)t(c)t+1(q1−nab/c)t+2

q−n(qab/c− 1)qt+1,
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and pull out a few factors to obtain a standard hypergeometric series:

=
(1− a)(1− b)q−n+1(qab/c− 1)

(1− c)(1− q1−nab/c)(1− q2−nab/c)

∞∑
t=0

(aq)t(bq)t(q
1−n)t

(q)t(cq)t(q3−nab/c)t
qt

=
(1− a)(1− b)q−n+1(qab/c− 1)

(1− c)(1− q1−nab/c)(1− q2−nab/c) 3φ2

(
aq bq q−(n−1)

cq q1−(n−1)(aq)(bq)/(cq)
; q, q

)

=
(1− a)(1− b)q−n+1(qab/c− 1)

(1− c)(1− q1−nab/c)(1− q2−nab/c)
Sn−1(aq, bq, cq).

Thus, we have a recurrence relation that gives Sn in terms of Sn−1. Now consider Tn(a, b, c)− Tn−1(a, b, c):

Tn(a, b, c)− Tn−1(a, b, c) =
(c/a)n(c/b)n
(c)n(c/ab)n

− (c/a)n−1(c/b)n−1
(c)n−1(c/ab)n−1

=
(c/a)n(c/b)n
(c)n(c/ab)n

− (c/a)n−1(c/b)n−1(1− cqn−1)(1− qn−1c/ab)
(c)n(c/ab)n

=
(c/a)n−1(c/b)n−1

(c)n(c/ab)n

(
(1− qn−1c/a)(1− qn−1c/b)− (1− cqn−1)(1− qn−1c/ab)

)

=
(c/a)n−1(c/b)n−1

(c)n(c/ab)n
cqn−1

(
1 +

1

ab
− 1

a
− 1

b

)

=
(c/a)n−1(c/b)n−1

(c)n(c/ab)n
cqn−1

(1− a)(1− b)
ab

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/ab)n

cqn−1
(1− a)(1− b)

(1− c)ab

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/ab)n−2

cqn−1
(1− a)(1− b)

(1− c)ab(1− qn−1c/ab)(1− qn−2c/ab)

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/abq)n−1

cqn−1
(1− a)(1− b)(1− c/abq)

(1− c)ab(1− qn−1c/ab)(1− qn−2c/ab)

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/abq)n−1

(1− a)(1− b)
(1− c)

(1− c/abq)
(1− qn−1c/ab)(1− qn−2c/ab)

cqn−1

ab

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/abq)n−1

(1− a)(1− b)
(1− c)

c/abq(abq/c− 1)

qn−1c/ab(q1−nab/c− 1)qn−2c/ab(q2−nab/c− 1)

cqn−1

ab

=
(c/a)n−1(c/b)n−1
(cq)n−1(c/abq)n−1

(1− a)(1− b)
(1− c)

(abq/c− 1)

(1− q1−nab/c)(1− q2−nab/c)
q−n+1

=
(1− a)(1− b)q−n+1(qab/c− 1)

(1− c)(1− q1−nab/c)(1− q2−nab/c)
Tn−1(aq, bq, cq).

This gives the same recurrence as for Sn. Thus, since Sn and Tn satisfy the same initial condition and
recurrence relation, they must be equal for all values of n by induction.
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2.10 Lemma. Let πk,r(n; q) denote the generating function for plane partitions with at most r columns, at
most k rows, and with each entry ≤ n. Then,

πk,r(n; q) =
(q)1(q)2 · · · (q)k−1

(q)r(q)r+1 · · · (q)r+k−1
· (q)n+r(q)n+r+1 · · · (q)n+r+k−1

(q)n(q)n+1 · · · (q)n+k−1
.

Proof. First note that πk,r(n; q) can be expressed in terms of πr(n1, . . . , nk; q) by summing over all possible
k-tuples (n1, . . . , nk). This simply means splitting πk,r(n; q) into a sum where each term accounts for a
specific first column. Explicitly,

πk,r(n; q) =

n∑
n1=0

n1∑
n2=0

· · ·
nk−1∑
nk=0

πr(n1, . . . , nk; q).

Now compare this to the generating function for plane partitions with at most r + 1 columns, at most
k rows, with each entry ≤ n, and with the new first column consisting entirely of ns; that is, consider
πr+1(n, n, . . . , n; q). Clearly there is a one-to-one correspondence between the partitions generated by
πk,r(n; q) and those generated by πr+1(n, n, . . . , n; q); however, if N is the number being partitioned for
πk,r(n; q), then N + kn is the number being partitioned by πr+1(n, n, . . . , n; q). In other words, the coeffi-
cient of qN in πk,r(n; q) is equal to the coefficient of qN+kn in πr+1(n, n, . . . , n; q). Thus,

πk,r(n; q) = q−knπr+1(n, n, . . . , n; q),

and so Lemma 2.6 can be invoked with n in place of nj and r + 1 in place of r, giving

πk,r(n; q) = det

(
q(i−j)(i−j−1)/2

[
n+ r

r − i+ j

])
1≤i,j≤k

.

At this point in the book The Theory of Partitions [1], we read “We proceed by using another ingenious
device of L. Carlitz. Let

W (k, r) = det

(
qri+

1
2 i(i−1)

[
j

i

])
0≤i,j≤k−1

.”

Then one multiplies πk,r(n; q)W (k, r), and the resulting determinant has a nice computable form. However,
how one would come up with this W (k, r) is not at all clear. Instead, following the advice of G. E. Andrews,
we will define

V (k, r, n) = det

(
(−q)j−i

[
j − 1

j − i

]
(qn; q)j−i

(qr+i; q)j−i

)
.

This V (k, r, n) can be found by supposing a matrix of the form

V (k, r, n) = det


1 X Y · · ·
0 1 Z · · ·
0 0 1 · · ·
...

...
...

. . .

 ,

where X,Y, Z, . . . are chosen such that the matrix in πk,r(n; q)V (k, r, n) is upper triangular. This way,
multiplying πk,r(n; q) by V (k, r, n) does not affect the value of the determinant, since clearly V (k, r, n) = 1,
and we know ahead of time that the resulting matrix has a nice computable form.
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So, let us multiply. If πk,r(n; q)V (k, r, n) = (xi,j)1≤i,j≤k, then

xi,j =

k∑
t=1

q(
i−t
2 )
[
n+ r

r − i+ t

]
(−q)j−t

[
j − 1

j − t

]
(qn)j−t

(qr+t)j−t
.

Note that the factor of
[
j−1
j−t
]

causes every term beyond t = j to be equal to 0. Thus, the upper limit of
summation can be changed to j:

=

j∑
t=1

q(
i−t
2 )
[
n+ r

r − i+ t

]
(−q)j−t

[
j − 1

j − t

]
(qn)j−t

(qr+t)j−t
.

Next, we should shift the index of summation so that it starts at t = 0 like a q-hypergeometric series:

=

j−1∑
t=0

q(
i−t−1

2 )
[

n+ r

r − i+ t+ 1

]
(−q)j−t−1

[
j − 1

j − t− 1

]
(qn)j−t−1

(qr+t+1)j−t−1
.

Now expand the q-binomial coefficients:

=

j−1∑
t=0

q(
i−t−1

2 ) (q)n+r
(q)r−i+t+1(q)n+i−t−1

(−q)j−t−1 (q)j−1
(q)j−t−1(q)t

(qn)j−t−1
(qr+t+1)j−t−1

.

Next, we can split (q)r−i+t+1 into two products:

=

j−1∑
t=0

q(
i−t−1

2 ) (q)n+r
(q)r−i+1(qr−i+2)t(q)n+i−t−1

(−q)j−t−1 (q)j−1
(q)j−t−1(q)t

(qn)j−t−1
(qr+t+1)j−t−1

.

Also, (qr+t+1)j−t−1 can be completed so that it starts with (1− q):

=

j−1∑
t=0

q(
i−t−1

2 ) (q)n+r
(q)r−i+1(qr−i+2)t(q)n+i−t−1

(−q)j−t−1 (q)j−1
(q)j−t−1(q)t

(qn)j−t−1(q)r+t
(q)r+j−1

.

The resulting (q)r+t can be split into two products:

=

j−1∑
t=0

q(
i−t−1

2 ) (q)n+r
(q)r−i+1(qr−i+2)t(q)n+i−t−1

(−q)j−t−1 (q)j−1
(q)j−t−1(q)t

(qn)j−t−1(q)r(q
r+1)t

(q)r+j−1
.

Some products can be pulled out of the summation:

=
(q)n+r(q)j−1(q)r
(q)r−i+1(q)r+j−1

j−1∑
t=0

(qr+1)t
(q)t(qr−i+2)t

(qn)j−t−1
(q)n+i−t−1(q)j−t−1

q(
i−t−1

2 )(−q)j−t−1.

Lemma 2.7 can be applied to each product in (qn)j−t−1/(q)n+i−t−1(q)j−t−1:

=
(q)n+r(q)j−1(q)r
(q)r−i+1(q)r+j−1

j−1∑
t=0

(qr+1)t
(q)t(qr−i+2)t

(qn)j−1

(−1)tqntq(j−1)t−(t+1
2 )(q2−j−n)t

· (−1)tqtq(n+i−1)t−(t+1
2 )(q1−n−i)t

(q)n+i−1

· (−1)tqtq(j−1)t−(t+1
2 )(q1−j)t

(q)j−1
q(

i−t−1
2 )(−q)j−t−1.
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Some final clean up:

= (−1)j−1qj+i(i−3)/2
(q)n+r(q)r(q

n)j−1
(q)r−i+1(q)r+j−1(q)n+i−1

j−1∑
t=0

(qr+1)t(q
1−n−i)t(q

1−j)t
(q)t(qr−i+2)t(q2−j−n)t

qt.

Note that because of the factor (q1−j)t, the upper limit of summation can be extended to ∞, and every new
term is equal to zero. Thus,

= (−1)j−1qj+i(i−3)/2
(q)n+r(q)r(q

n)j−1
(q)r−i+1(q)r+j−1(q)n+i−1

∞∑
t=0

(qr+1)t(q
1−n−i)t(q

1−j)t
(q)t(qr−i+2)t(q2−j−n)t

qt

= (−1)j−1qj+i(i−3)/2
(q)n+r(q)r(q

n)j−1
(q)r−i+1(q)r+j−1(q)n+i−1

3φ2

(
qr+1 q1−n−i q1−j

qr−i+2 q2−j−n
; q, q

)
.

Apply Lemma 2.9 to the q-hypergeometric series with a, b, c, and n respectively replaced by qr+1, q1−n−i,
qr−i+2, and j − 1:

= (−1)j−1qj+i(i−3)/2
(q)n+r(q)r(q

n)j−1
(q)r−i+1(q)r+j−1(q)n+i−1

(q1−i)j−1(qr+n+1)j−1
(qr−i+2)j−1(qn)j−1

.

Cancel and combine the products that we can:

= (−1)j−1qj+i(i−3)/2
(q)r(q

1−i)j−1(q)n+r+j−1
(q)r+j−1(q)n+i−1(q)r−i+j

.

Note that when j ≥ i + 1, we have xi,j = 0 because (q1−i)j−1 then contains a factor of (1 − q1−i+i−1) =
(1− q0) = 0. Thus, the matrix (xi,j) is lower triangular as planned, and its determinant is the product along
the diagonal. To that end, compute

xi,i = (−1)i−1qi+i(i−3)/2
(q)r(q

1−i)i−1(q)n+r+i−1
(q)r+i−1(q)n+i−1(q)r

= (−1)i−1q(
i
2) (q1−i)i−1(q)n+r+i−1

(q)r+i−1(q)n+i−1

= (−1)i−1q(i−1)+(i−2)+···+1(1− q1−i)(1− q2−i) · · · (1− q−1)
(q)n+r+i−1

(q)r+i−1(q)n+i−1

= (−1)i−1qi−1(1− q1−i)q2−i(1− q2−i) · · · q1(1− q−1)
(q)n+r+i−1

(q)r+i−1(q)n+i−1

= (−1)i−1(qi−1 − 1)(qi−2 − 1) · · · (q − 1)
(q)n+r+i−1

(q)r+i−1(q)n+i−1

= (−1)i−1(−1)i−1(1− qi−1)(1− qi−2) · · · (1− q) (q)n+r+i−1
(q)r+i−1(q)n+i−1

=
(q)i−1(q)n+r+i−1
(q)r+i−1(q)n+i−1

14



Thus,

πk,r(n; q) = det(xi,j)

=

k∏
i=1

xi,i

=

k∏
i=1

(q)i−1(q)n+r+i−1
(q)r+i−1(q)n+i−1

=
(q)1(q)2 · · · (q)k−1

(q)r(q)r+1 · · · (q)r+k−1
· (q)n+r(q)n+r+1 · · · (q)n+r+k−1

(q)n(q)n+1 · · · (q)n+k−1
.

Proof of Theorem 2.1. In Lemma 2.10,

πk,r(n; q) =
(q)1(q)2 · · · (q)k−1

(q)r(q)r+1 · · · (q)r+k−1
· (q)n+r(q)n+r+1 · · · (q)n+r+k−1

(q)n(q)n+1 · · · (q)n+k−1
,

make cancellations, leaving

=
1

(q)r(q2)r+1 · · · (qk)r+k−1
· (qn+1)r(q

n+2)r · · · (qn+k)r
1

,

send n→∞, leaving

=
1

(q)r(q2)r+1 · · · (qk)r+k−1
· (0)r(0)r · · · (0)r

1
,

=
1

(q)r(q2)r+1 · · · (qk)r+k−1
,

send r →∞, leaving

=
1

(q)∞(q2)∞ · · · (qk)∞
,

=

∞∏
m=1

1

(1− qm)min(m,k)
,

and send k →∞, leaving

=

∞∏
m=1

1

(1− qm)m
.

Thus, the generating function for plane partitions with at most ∞ columns, at most ∞ rows, and with each
entry ≤ ∞, i.e.

∑∞
n=0 p2(n)qn, has the desired form.
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3 Higher Dimensional Partitions, Part 1

A d-dimensional partition of n is a d-dimensional array of positive integers whose sum is n, such that
the array is non-increasing in each direction; here, the number of d-dimensional partitions of n is denoted
pd(n). Note that 1- and 2-dimensional partitions are respectively the same as ordinary partitions and plane
partitions; also, 3-dimensional partitions are sometimes called solid partitions. For example, p3(4) = 26
because there are twenty-six solid partitions of 4, which are shown below. A subscript up arrow indicates
the number should be thought of as coming out of the page, on top of the number below it; a subscript left
arrow indicates the same thing, except on top of the number to the right.(

4
)
,

(
3
1

)
,

(
3 1

)
,

(
1↑
3

)
,

(
2
2

)
,

(
2 2

)
,

(
2↑
2

)
,

2
1
1

 ,

2 1 1
 ,

1↑
1↑
2

 ,

2 1
1

 ,

1↑
2 1

 ,

1↑
2
1

 ,


1
1
1
1

 ,


1 1 1 1

 ,


1↑
1↑
1↑
1

 ,


1 1
1
1

 ,


1 1 1
1

 ,


1↑
1 1 1

 ,


1↑
1
1
1

 ,


1↑
1↑
1 1

 ,


1↑
1↑
1
1

 ,


1 1
1 1

 ,


1↑ 1↑
1 1

 ,


1← 1
1← 1

 , and


1↑
1 1
1

 .

For each dimension d ≤ 8, the sequence of values taken on by pd(n) is available in N. J. A. Sloane’s On-Line
Encyclopedia of Integer Sequences (OEIS) [10]; the identifying labels for these sequences are given in Table 1.
Farther down, Table 2 gives the first ten entries in each sequence.
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d OEIS
1 A000041
2 A000219
3 A000293
4 A000334
5 A000390
6 A000416
7 A000427
8 A179855

Table 1: OEIS identifying labels for the sequences of values taken on by pd(n).

The generating function for d-dimensional partitions is defined as the formal power series
∑∞
n=0 pd(n)qn.

So the question arises, does there exist an infinite product representation for dimensions higher than 2?
Generalizing Theorems 1.1 and 2.1, MacMahon made the following

3.1 Conjecture. Formally,
∞∑
n=0

pd(n)qn
?
=

∞∏
m=1

(1− qm)−(m+d−2
d−1 ).

This certainly is true for d = 1 and d = 2. Unfortunately, for all d ≥ 3, at least when n = 6, the
conjecture was shown to be false by A. O. L. Atkin, P. Bratley, I. G. Macdonald, and J. K. S. McKay in
their 1967 paper “Some Computations for m-Dimensional Partitions” [2]. Thus, it makes sense to refer to
the coefficients of qn generated by the above infinite product as MacMahon numbers and to denote them
md(n).

3.2 Definition. Here, for all positive integers d and all nonnegative integers n, the MacMahon numbers
md(n) are defined by the equation

∞∑
n=0

md(n)qn =

∞∏
m=1

(1− qm)−(m+d−2
d−1 ).

Table 3 gives the first ten values of md(n) for each dimension ≤ 8, and Table 4 gives the difference
∆d(n) = md(n)− pd(n). That is one way to measure the accuracy of MacMahon’s conjecture; in particular,
the first nonzero difference is ∆3(6) = 1. It is possible that MacMahon actually computed this specific
difference by hand, since G. E. Andrews says in his 1976 book The Theory of Partitions [1] that MacMahon
eventually came to doubt the truth of his conjecture (p. 189).

Another way to measure the accuracy of MacMahon’s conjecture is to fix n and compute ∆d(n) as a
function of d. In fact, for fixed n, both pd(n) and md(n) seem to be polynomials with integer coefficients
in the binomial basis (1, d,

(
d
2

)
,
(
d
3

)
, . . . ). The coefficients of pd(n) are given in Table 5; those of md(n) in

Table 6; and those of the difference ∆d(n) = md(n) − pd(n) in Table 7. The data in Table 5 came from
S. B. Ekhad’s 2012 paper “The Number of m-Dimensional Partitions of Eleven and Twelve” [5].

Atkin, et al. [2] found these coefficients simply by computing more points than the degree of the polyno-
mial. Instead of that, we present a more interesting approach from The Theory of Partitions [1]. It is still
somewhat computational, and so we only prove

3.3 Theorem. For all dimensions d,

md(6) = pd(6) +

(
d

3

)
+

(
d

4

)
.

The proof of this theorem is split into Lemmas 3.4 and 3.5, which give the explicit values of md(6) and
pd(6), respectively. Thus, it suffices to simply compare the results of the two lemmas.
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n p1(n) p2(n) p3(n) p4(n) p5(n) p6(n) p7(n) p8(n)
1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9
3 3 6 10 15 21 28 36 45
4 5 13 26 45 71 105 148 201
5 7 24 59 120 216 357 554 819
6 11 48 140 326 657 1197 2024 3231
7 15 86 307 835 1907 3857 7134 12321
8 22 160 684 2145 5507 12300 24796 46209
9 30 282 1464 5345 15522 38430 84625 170370
10 42 500 3122 13220 43352 118874 285784 621316
11 56 859 6500 32068 119140 362670 953430 2240838
12 77 1479 13426 76965 323946 1095430 3151332 8011584

Table 2: Values of pd(n).

n m1(n) m2(n) m3(n) m4(n) m5(n) m6(n) m7(n) m8(n)
1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9
3 3 6 10 15 21 28 36 45
4 5 13 26 45 71 105 148 201
5 7 24 59 120 216 357 554 819
6 11 48 141 331 672 1232 2094 3357
7 15 86 310 855 1982 4067 7624 13329
8 22 160 692 2214 5817 13301 27428 52215
9 30 282 1483 5545 16582 42357 96231 199686
10 42 500 3162 13741 46633 132845 332159 750733
11 56 859 6583 33362 128704 409262 1126792 2774793
12 77 1479 13602 80091 350665 1243767 3769418 10112184

Table 3: The MacMahon numbers md(n).

n ∆1(n) ∆2(n) ∆3(n) ∆4(n) ∆5(n) ∆6(n) ∆7(n) ∆8(n)
1
2
3
4
5
6 1 5 15 35 70 126
7 3 20 75 210 490 1008
8 8 69 310 1001 2632 6006
9 19 200 1060 3927 11606 29316
10 40 521 3281 13971 46375 129417
11 83 1294 9564 46592 173362 533955
12 176 3126 26719 148337 618086 2100600

Table 4: The difference ∆d(n) = md(n)− pd(n). Zeros are not shown.
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n 1 d
(
d
2

) (
d
3

) (
d
4

) (
d
5

) (
d
6

) (
d
7

) (
d
8

) (
d
9

) (
d
10

) (
d
11

)
1 1
2 1 1
3 1 2 1
4 1 4 4 1
5 1 6 11 7 1
6 1 10 27 28 11 1
7 1 14 57 93 64 16 1
8 1 21 117 269 282 131 22 1
9 1 29 223 707 1062 766 244 29 1
10 1 41 417 1747 3565 3681 1871 421 37 1
11 1 55 748 4090 10999 15489 11400 4152 683 46 1
12 1 76 1326 9219 31828 58975 59433 31802 8483 1054 56 1

Table 5: The coefficients of the polynomials pd(n) in the binomial basis.

n 1 d
(
d
2

) (
d
3

) (
d
4

) (
d
5

) (
d
6

) (
d
7

) (
d
8

) (
d
9

) (
d
10

) (
d
11

)
1 1
2 1 1
3 1 2 1
4 1 4 4 1
5 1 6 11 7 1
6 1 10 27 29 12 1
7 1 14 57 96 72 21 1
8 1 21 117 277 319 176 38 1
9 1 29 223 726 1186 1016 431 71 1
10 1 41 417 1787 3926 4757 3171 1065 136 1
11 1 55 748 4173 11961 19413 18358 9829 2666 265 1
12 1 76 1326 9395 34250 71824 90826 69378 30531 6782 522 1

Table 6: The coefficients of the polynomials md(n) in the binomial basis.

n 1 d
(
d
2

) (
d
3

) (
d
4

) (
d
5

) (
d
6

) (
d
7

) (
d
8

) (
d
9

) (
d
10

) (
d
11

)
1
2
3
4
5
6 1 1
7 3 8 5
8 8 37 45 16
9 19 124 250 187 42
10 40 361 1076 1300 644 99
11 83 962 3924 6958 5677 1983 219
12 176 2422 12849 31393 37576 22048 5728 466

Table 7: The coefficients of the polynomials ∆d(n) = md(n)− pd(n) in the binomial basis.
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3.4 Lemma. For all nonnegative integers d,

md(6) = 1 + 10d+ 27

(
d

2

)
+ 29

(
d

3

)
+ 12

(
d

4

)
+

(
d

5

)
.

Proof. By definition, md(6) is the coefficient of q6 in a certain infinite product. Thus, take the infinite
product, and write it out explicitly as far as there are powers of q that are ≤ 6

∞∏
n=1

(1− qn)−(n+d−2
d−1 ) =

∞∏
n=1

(
1

1− qn

)(n+d−2
d−1 )

=

∞∏
n=1

 ∞∑
j=0

qjn

(n+d−2
d−1 )

=

 ∞∑
j=0

qj

(d−1
d−1) ∞∑

j=0

q2j

( d
d−1) ∞∑

j=0

q3j

(d+1
d−1)

·

 ∞∑
j=0

q4j

(d+2
d−1) ∞∑

j=0

q5j

(d+3
d−1) ∞∑

j=0

q6j

(d+4
d−1)

· · ·

=
(

1 + q + q2 + q3 + q4 + q5 + q6 + · · ·
)

·
(

1 + q2 + q4 + q6 + · · ·
)d (

1 + q3 + q6 + · · ·
)(d+1

2 )

·
(

1 + q4 + · · ·
)(d+2

3 ) (
1 + q5 + · · ·

)(d+3
4 ) (

1 + q6 + · · ·
)(d+4

5 )
· · · .
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Now use the binomial and multinomial theorems:

=
(

1 + q + q2 + q3 + q4 + q5 + q6 + · · ·
)

·

(
1 + dq2 +

(
d

2

)
q2+2 +

(
d

3

)
q2+2+2 + dq4 +

(
d

1, 1

)
q4+2 + dq6 + · · ·

)

·

(
1 +

(
d+ 1

2

)
q3 +

((d+1
2

)
2

)
q3+3 +

(
d+ 1

2

)
q6 + · · ·

)

·

(
1 +

(
d+ 2

3

)
q4 + · · ·

)(
1 +

(
d+ 3

4

)
q5 + · · ·

)(
1 +

(
d+ 4

5

)
q6 + · · ·

)
· · ·

=
(

1 + q + q2 + q3 + q4 + q5 + q6 + · · ·
)

·

1 + dq2 +

((
d

2

)
+ d

)
q4 +

((
d

3

)
+

(
d

1, 1

)
+ d

)
q6 + · · ·



·

1 +

(
d+ 1

2

)
q3 +

(((d+1
2

)
2

)
+

(
d+ 1

2

))
q6 + · · ·



·

(
1 +

(
d+ 2

3

)
q4 + · · ·

)(
1 +

(
d+ 3

4

)
q5 + · · ·

)(
1 +

(
d+ 4

5

)
q6 + · · ·

)
· · · .

At this point, it is possible to extract the coefficient of q6:

md(6) = 1 +

((
d

3

)
+

(
d

1, 1

)
+ d

)
+

(((d+1
2

)
2

)
+

(
d+ 1

2

))
+

(
d+ 4

5

)
+

(
d+ 3

4

)

+ d

(
d+ 2

3

)
+

(
d+ 2

3

)
+

((
d

2

)
+ d

)
+ d+

(
d+ 1

2

)
+ d

(
d+ 1

2

)

= 1 + 3d+ 3

(
d

2

)
+

(
d

3

)
+

((d+1
2

)
2

)
+

(
d+ 4

5

)
+

(
d+ 3

4

)

+ (d+ 1)

(
d+ 2

3

)
+ (d+ 2)

(
d+ 1

2

)
.

Note
(
d
1,1

)
= 2
(
d
2

)
. Now use Pascal’s rule

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
:

= 1 + 3d+ 3

(
d

2

)
+

(
d

3

)
+

((d+1
2

)
2

)
+

(
d+ 3

4

)
+

(
d+ 3

5

)
+

(
d+ 2

3

)
+

(
d+ 2

4

)

+ (d+ 1)

((
d+ 1

2

)
+

(
d+ 1

3

))
+ (d+ 2)

(
d+

(
d

2

))
.
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Use Pascal’s rule again, and pull out the part of the last term coming from the 2:

= 1 + 5d+ 5

(
d

2

)
+

(
d

3

)
+

((d+1
2

)
2

)
+

(
d+ 2

3

)
+

(
d+ 2

4

)
+

(
d+ 2

4

)
+

(
d+ 2

5

)

+

(
d+ 1

2

)
+

(
d+ 1

3

)
+

(
d+ 1

3

)
+

(
d+ 1

4

)

+ (d+ 1)

((
d

1

)
+

(
d

2

)
+

(
d

2

)
+

(
d

3

))
+ d

(
d+

(
d

2

))
.

Combine like terms:

= 1 + 5d+ 5

(
d

2

)
+

(
d

3

)
+

((d+1
2

)
2

)
+

(
d+ 2

3

)
+ 2

(
d+ 2

4

)
+

(
d+ 2

5

)

+

(
d+ 1

2

)
+ 2

(
d+ 1

3

)
+

(
d+ 1

4

)

+ (d+ 1)

((
d

1

)
+ 2

(
d

2

)
+

(
d

3

))
+ d

(
d+

(
d

2

))
.

Use Pascal’s rule again, and pull out the part of the second-to-last term coming from the 1:

= 1 + 6d+ 7

(
d

2

)
+ 2

(
d

3

)
+

((d+1
2

)
2

)
+

(
d+ 1

2

)
+

(
d+ 1

3

)
+ 2

(
d+ 1

3

)

+ 2

(
d+ 1

4

)
+

(
d+ 1

4

)
+

(
d+ 1

5

)

+

(
d

1

)
+

(
d

2

)
+ 2

(
d

2

)
+ 2

(
d

3

)
+

(
d

3

)
+

(
d

4

)

+ d

(
d+ 2

(
d

2

)
+

(
d

3

))
+ d

(
d+

(
d

2

))
.

Use Pascal’s rule one last time:

= 1 + 7d+ 10

(
d

2

)
+ 5

(
d

3

)
+

(
d

4

)
+

((d+1
2

)
2

)
+

(
d

1

)
+

(
d

2

)
+

(
d

2

)
+

(
d

3

)
+ 2

(
d

2

)
+ 2

(
d

3

)

+ 2

(
d

3

)
+ 2

(
d

4

)
+

(
d

3

)
+

(
d

4

)
+

(
d

4

)
+

(
d

5

)

+ d

(
2d+ 3

(
d

2

)
+

(
d

3

))
,

and combine like terms:

= 1 + 8d+ 14

(
d

2

)
+ 11

(
d

3

)
+ 5

(
d

4

)
+

(
d

5

)
+

((d+1
2

)
2

)
+ d

(
2d+ 3

(
d

2

)
+

(
d

3

))
.
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Now to deal with ((d+1
2

)
2

)
+ d

(
2d+ 3

(
d

2

)
+

(
d

3

))
,

first expand it in the usual way:((d+1
2

)
2

)
+ d

(
2d+ 3

(
d

2

)
+

(
d

3

))

=
1

2

(
(d+ 1)d

2

)(
(d+ 1)d

2
− 1

)
+ d

(
2d+ 3

d(d− 1)

2
+
d(d− 1)(d− 2)

6

)

=
1

8

(
d2 + d

)(
d2 + d− 2

)
+

(
2d2 +

3

2

(
d3 − d2

)
+

1

6

(
d4 − 3d3 + 2d2

))

=
1

8

(
d4 + 2d3 − d2 − 2d

)
+

(
1

6
d4 + d3 +

5

6
d2
)

=
7

24
d4 +

5

4
d3 +

17

24
d2 − 1

4
d.

Next some linear algebra is in order. Specifically, the above is a vector in the vector space of polynomials in
d with rational coefficients and degree ≤ 4. Right now it is represented in the standard basis (1, d, d2, d3, d4),
and one can use the appropriate change-of-base matrix to represent it in the binomial basis (1, d,

(
d
2

)
,
(
d
3

)
,
(
d
4

)
).

The result is

2d+ 13

(
d

2

)
+ 18

(
d

3

)
+ 7

(
d

4

)
,

which is easily verified like so:

2d+ 13

(
d

2

)
+ 18

(
d

3

)
+ 7

(
d

4

)
= 2d+ 13

d(d− 1)

2
+ 18

d(d− 1)(d− 2)

6
+ 7

d(d− 1)(d− 2)(d− 3)

24

= 2d+
13

2

(
d2 − d

)
+ 3

(
d3 − 3d2 + 2d

)
+

7

24

(
d4 − 6d3 + 11d2 − 6d

)
=

7

24
d4 +

5

4
d3 +

17

24
d2 − 1

4
d.

Thus,

md(6) =

(
1 + 8d+ 14

(
d

2

)
+ 11

(
d

3

)
+ 5

(
d

4

)
+

(
d

5

))
+

(
2d+ 13

(
d

2

)
+ 18

(
d

3

)
+ 7

(
d

4

))

= 1 + 10d+ 27

(
d

2

)
+ 29

(
d

3

)
+ 12

(
d

4

)
+

(
d

5

)
.
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3.5 Lemma. For all nonnegative integers d,

pd(6) = 1 + 10d+ 27

(
d

2

)
+ 28

(
d

3

)
+ 11

(
d

4

)
+

(
d

5

)
Proof. In Table 8 below, for each ordinary partition of 6, we list the ways to arrange the partition in higher
dimensional space, and then for each arrangement, we count the number of ways to place it in higher
dimensional space. For example, one ordinary partition of 6 is 1 + 1 + 1 + 1 + 1 + 1, and one arrangement
of this partition is as follows.

1
1

1

1

1

1

Each arrowhead indicates a separate dimension of the d-dimensional space; here, four dimensions are used.
There is a 1 at (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and also one at a point for which two
coordinates are 1 and two coordinates are 0, such as (1, 1, 0, 0). There are

(
d
4

)
ways to choose which four

dimensions of the d-dimensional space are used, and for each one of those ways, there are
(
4
2

)
= 6 ways to

choose the point of the form (1, 1, 0, 0). Thus, there are 6
(
d
4

)
placements of this arrangement of this partition.

The value of pd(6) is given by the sum total of the right-hand column in the table.

Ordinary Partition of 6 Arrangement in Higher Dimensional Space Placements

6 6 1

5 + 1 5 1 d

4 + 2 4 2 d

4 + 1 + 1 4 1 1 d

4
1

1
(
d

2

)

3 + 3 3 3 d

3 + 2 + 1 3 2 1 d

3
2

1
2

(
d

2

)

3 + 1 + 1 + 1 3 1 1 1 d

3
1

1
1

2

(
d

2

)
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3

1

1

1

(
d

3

)

3
1

1
1

(
d

2

)

2 + 2 + 2 2 2 2 d

2
2

2
(
d

2

)

2 + 2 + 1 + 1 2 2 1 1 d

2
1

2
1

2

(
d

2

)

2
2

1
1

2

(
d

2

)

2

1

2

1 3

(
d

3

)

2
1

2
1 2

(
d

2

)

2 + 1 + 1 + 1 + 1 2 1 1 1 1 d

2
1

1
1

1

2

(
d

2

)

2
1

1

1
1 (

d

2

)

2

1

1

1

1
3

(
d

3

)
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2
1

1

1

1 (
d

4

)

2
1

1
1

1
2

(
d

2

)

2

1

11

1 3

(
d

3

)

1 + 1 + 1 + 1 + 1 + 1 1 1 1 1 1 1 d

1
1

1
1

1
1

2

(
d

2

)

1
1

1

1
1

1

2

(
d

2

)

1

1

1

1

1

1

3

(
d

3

)

1

1

1

1

1 1
3

(
d

3

)

1
1

1

1

1

1

4

(
d

4

)
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1

1

1

1

1

1

(
d

5

)

1
1

1
1

1
1 2

(
d

2

)

1
1

1

1
1

1

(
d

2

)

1
1

1
1

1

1
2

(
d

2

)

1

1

1

1

1

1

3

(
d

3

)

1
1

1

1

1

1 6

(
d

4

)

1

1

1

1

1

1

3

(
d

3

)

1

1

1

1

1

1
6

(
d

3

)

Table 8: Arrangements of ordinary partitions of 6 into higher dimensional space.
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4 Higher Dimensional Partitions, Part 2

Despite the above disproof, not all hope is lost for MacMahon’s conjecture; for several physicists relatively
recently showed it to be asymptotically correct in a certain way. The path to this was as follows.

The familiar 2-dimensional Ferrers diagram of an ordinary partition generalizes to a (d+ 1)-dimensional
Ferrers array for d-dimensional partitions. This representation of d-dimensional partitions was rediscovered
by F. Y. Wu, G. Rollet, H. Y. Huang, J. M. Maillard, C.-K. Hu, and C.-N. Chen in their 1996 paper “Directed
Compact Lattice Animals, Restricted Partitions of an Integer, and the Infinite-State Potts Model” [11]. They
conjectured that the number of d-dimensional partitions of n, with restrictions on the sizes of the parts, is
asymptotically equivalent to exp(Cnd/(d+1)).

This was proved by D. P. Bhatia, M. A. Prasad, and D. Arora in their 1997 paper “Asymptotic Results
for the Number of Multidimensional Partitions of an Integer and Directed Compact Lattice Animals” [4],
where they also proved the conjecture for partitions without restrictions on the sizes of the parts; that is,
for pd(n). We state this last result as

4.1 Theorem. For every nonnegative integer d, we have that log pd(n) � nd/(d+1) as n→∞; that is, there
exist positive constants C1 and C2, depending on d, such that

C1 log nd/(d+1) ≤ log pd(n) ≤ C2 log nd/(d+1),

for sufficiently large n.

This theorem, with the MacMahon numbers md(n) in place of pd(n), was shown to hold in Chapter 5 of
N. S. Prabhakar’s 2011 Bachelor’s thesis “On the Asymptotics of Some Counting Problems in Physics” [9],
and in a more polished form in Appendix A of the 2012 paper “On the Asymptotics of Higher Dimensional
Partitions” by S. Balakrishnan, S. Govindarajan, and N. S. Prabhakar [3].

We present the proof of Bhatia, et al. [4] in Lemmas 4.2 and 4.3, the former for the lower bound and
the latter for the upper bound. Both use clever elementary counting arguments, but the second also uses
induction on the dimension d and Ferrers arrays.

4.2 Lemma. There exists a positive constant C, depending on d, such that

Cnd/(d+1) ≤ log pd(n)

for sufficiently large n.

Proof. The idea is to explicitly describe a set of particularly simple d-dimensional partitions. First, one
requires that all parts be arranged on a fixed d-dimensional cube of side length s. Not all partitions under
consideration will be partitions of the same number n, but they will be partitions of numbers in an interval
[n1, n2]. This gives enough information to obtain a lower bound on pd(n) because it is an increasing function
of n, and so

n2∑
n=n1

pd(n) ≤ (n2 − n1 + 1) pd(n2). (1)

The cube contains sd lattice points (x1, . . . , xd) with 0 < xj ≤ s for all j ∈ {1, . . . , d}, and one obtains
partitions by assigning a positive integer to each one of these lattice points. These should be thought of as
the parts of the partition; their sum is the number being partitioned. Specifically, consider assignments of
the form

P (x1, . . . , xd) = sd− (x1 + · · ·+ xd) + δ,

where δ ∈ {0, 1} depends on the point (x1, . . . , xd). Because of the amount of freedom in choosing δ, there

are 2s
d

such assignments, and therefore, the same number of partitions. Note that one cannot take δ > 1 and
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still expect to get a partition, because then the resulting array of numbers is not necessarily non-increasing
in every direction. Explicitly, the non-increasing condition requires that

P (x1, . . . , xj + 1, . . . , xd)− P (x1, . . . , xj , . . . , xd)

= −1 + δ(x1, . . . , xj + 1, . . . , xd)− δ(x1, . . . , xj , . . . , xd) ≤ 0.

The bound obtained thus far is

2s
d

≤
n2∑

n=n1

pd(n), (2)

where n1 and n2 are respectively the smallest and largest numbers being partitioned. Of course these two
numbers correspond respectively to δ ≡ 0 and δ ≡ 1. That is,

n1 =

s∑
x1=1

· · ·
s∑

xd=1

sd− (x1 + · · ·+ xd)

= sd(sd)−

 s∑
x1=1

x1 + · · ·+
s∑

xd=1

xd


= sd+1d− d

(
s(s+ 1)

2

)
, (3)

and n2 = n1 + sd. Now combining this with (1) and (2) gives

2s
d

≤ (sd + 1) pd(n2), (4)

but what is the size of s in terms of n2? From (3), it is clear that n1 � sd+1 as s→∞, and since n2 = n1+sd,
the same is true for n2. Thinking only of those integers n2 that arise as above for some integer s, this can
be reversed to say that

s � n1/(d+1)
2

as n2 →∞. Using this information in (4), taking logarithms, and then isolating the term of interest:

2Cn
d/(d+1)
2 ≤ (Cn

d/(d+1)
2 + 1) pd(n2)

Cn
d/(d+1)
2 ≤ log(Cn

d/(d+1)
2 + 1) + log(pd(n2))

Cn
d/(d+1)
2 − log(Cn

d/(d+1)
2 + 1) ≤ log(pd(n2)).

Now the end is in sight, since the left-hand side is � n
d/(d+1)
2 . However, this only covers those integers in

the sequence

n2 = n2(s) = sd+1d− d
(
s(s+ 1)

2

)
+ sd.

If n is not in this sequence, take s to be the largest side length such that n2(s) < n. Then (4) still holds,
since pd(n2(s)) < pd(n). Furthermore, n− n2(s) < n2(s+ 1)− n2(s) � sd as n→∞, so all the asymptotics
still follow with n in place of n2.
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4.3 Lemma. For every nonnegative integer d, there exists a positive constant C, depending on d, such that

log pd(n) ≤ Cnd/(d+1)

for sufficiently large n.

Proof. Induction on d. For the base case, Bhatia, et al. [4] used plane partitions, citing Wu, et al. [11];
however, that paper does not contain a rigorous proof. Instead, we use ordinary partitions for the base case,
using a result in M. I. Knopp’s 1970 book Modular Functions in Analytic Number Theory [7].

First, consider the generating function of ordinary partitions, G(x) =
∑∞
n=0 p1(n)xn. For 0 < x < 1, all

the terms in the series are positive; therefore, the whole sum is larger than any single summand. That is,
G(x) ≥ p1(n)xn, or equivalently, p1(n) ≤ G(x)/xn. Taking the logarithm of both sides yields log p1(n) ≤
logG(x)− n log x.

Next, look at logG(x) using Theorem 1.1:

logG(x) = log

 ∞∏
m=1

1

1− xm


=

∞∑
m=1

log

(
1

1− xm

)

=

∞∑
m=1

− log (1− xm)

=

∞∑
m=1

∞∑
k=1

(xm)k

k

=

∞∑
k=1

1

k

∞∑
m=1

xmk

=

∞∑
k=1

1

k

(
xk

1− xk

)
.

At this point, a crafty inequality is needed. Let f(x) = xk, and note that on [0, 1] this function is increasing
and concave up; therefore the tangent lies below the secant. That is,

f ′(x) <
f(1)− f(x)

1− x

=⇒ kxk−1 <
1− xk

1− x

=⇒ xk−1

1− xk
<

1

k(1− x)

=⇒ xk

1− xk
<

x

k(1− x)

=⇒ 1

k

(
xk

1− xk

)
<

x

k2(1− x)
.
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Thus,

logG(x) <

∞∑
k=1

x

k2(1− x)

=
x

1− x

∞∑
k=1

1

k2

=
π2

6

(
x

1− x

)
,

using the solution to the famous Basel problem.
Now to investigate n log x, again with a crafty inequality. This time, let g(x) = log(x), and note that

on [1, 1/x] this function is increasing and concave down; therefore the function lies below the tangent, or
g(x) < x− 1. In particular,

− log(x) = log(1/x)

< 1/x− 1

=
1− x
x

.

Thus, altogether,

log p1(n) ≤ logG(x)− n log x

≤ π2

6

(
x

1− x

)
+ n

(
1− x
x

)
.

Next, choose the value of x that makes the two terms equal, namely

x =

√
6n

π +
√

6n
.

This yields the following:

log p1(n) ≤ π2

6

 √
6n

π+
√
6n

1−
√
6n

π+
√
6n

+ n

1−
√
6n

π+
√
6n√

6n
π+
√
6n


=
π2

6

√
6n

π
+ n

π√
6n

=
π
√

6n

6
+
π
√

6n

6

=
2π
√

6n

6

=
π
√

6n

3

=
π
√

2
√

3
√
n√

3
√

3

= π

√
2

3

√
n,

which completes the proof of the base case d = 1, with C = π
√

2
3 .
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For the inductive step, suppose the upper bound holds for some dimension (d− 1) ≥ 1, and fix a number
n to be partitioned in d dimensions. In order to make use of the inductive hypothesis, it will be necessary
to decompose a d-dimensional partition into a list of (d− 1)-dimensional partitions. In this way, one arrives
at an upper bound of the form

pd(n) ≤
∑∏

k

pd−1(k), (5)

where the sum is over some set S of 1-dimensional partitions of n, and the product is over the parts k of these
1-dimensional partitions of n. Each term in the sum represents a way to partition n into a 1-dimensional list
of parts k, and each factor in the product represents the number of ways each part k can be subsequently
partitioned into a (d − 1)-dimensional array. The difficult part of the argument is to make S small enough
to give the claimed upper bound.

As one might expect, the set of all 1-dimensional partitions of n is too large. This corresponds to
fixing a dimension and mindlessly listing the (d− 1)-dimensional partitions along this fixed coordinate axis.
For example, any 2-dimensional partition can be viewed as a row of 1-dimensional partitions, and any 3-
dimensional partition can be viewed as a stack of 2-dimensional partitions. The longest list occurs when the
d-dimensional partition is a line made entirely of 1’s.

This extreme case illustrates the problem, but it also suggests a solution. If one chooses a direction
other than the direction of the line of 1’s, then the list of (d − 1)-dimensional partitions will be of length
1. So rather than fixing a direction before constructing the list, start with the largest (d − 1)-dimensional
partition, whatever direction it may lie in, and then from the remaining parts, again choose the largest
(d− 1)-dimensional partition, even if it’s not in the same direction, and continue in this way until all parts
are accounted for. Informally, one can picture a 3-dimensional partition as a packing of walls and floors,
rather than just a stack of floors.

How long can a list of (d − 1)-dimensional partitions be when constructed in this way? To maximize
the length of such a list, of course all parts of the d-dimensional partition should be 1. Then, one should
minimize the size of the largest (d − 1)-dimensional partition at each step by packing the the parts into a
cube. This particular list will actually proceed along a fixed direction, simply taking dn1/de slices of the
cube of side length dn1/de. In terms of the set S of 1-dimensional partitions of n, this provides an upper
bound of dn1/de on both the size of the parts and the total number of parts. This is not sufficient to directly
obtain an upper bound on pd(n) of the form nd/(d+1).

In order to force (d + 1) to appear, consider the (d + 1)-dimensional Ferrers array of a d-dimensional
partition. This can be viewed as a (d + 1)-dimensional partition where all the parts are 1’s. Thus, by the
preceding discussion, this can be decomposed into a list of d-dimensional partitions, where all the parts
are still 1’s, and with the length of the list at most dn1/(d+1)e. This of course corresponds to a list of
d-dimensional Ferrers arrays, which in turn correspond to (d − 1)-dimensional partitions. Again the upper
bound dn1/(d+1)e on the length of the list is an upper bound on the number of parts in the 1-dimensional
partitions in the set S. There is no longer a clear bound on the sizes of the parts of these 1-dimensional
partitions, but this will not be a problem.

So what can be said about the bound (5) now? First, invoking the base case, the number of terms in the
sum is bounded by exp(Cn1/2). Second, each product can be extended to have exactly dn1/(d+1)e factors by
multiplying by 1 several times, and so the maximum value of this product occurs when all the factors are
equal. That is, when all the parts are made as close as possible to

n

dn1/(d+1)e
� n

n1/(d+1)
= nd/(d+1).
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Thus, (5) becomes

pd(n) ≤
∑∏

k

pd−1(k)

≤ exp(Cn1/2)

(
pd−1

(
nd/(d+1)

))dn1/(d+1)e

≤ exp(Cn1/2)

(
pd−1

(
nd/(d+1)

))n1/(d+1)+1

.

Finally making use of the inductive hypothesis, for sufficiently large n, this is

≤ exp(Cn1/2)

(
exp

(
C
(
nd/(d+1)

)(d−1)/d))n1/(d+1)+1

= exp(Cn1/2) exp

(
C
(
n(d−1)/(d+1)

)(
n1/(d+1) + 1

))
= exp(Cn1/2) exp

(
Cnd/(d+1) + Cn(d−1)/(d+1)

)
.

Taking logarithms,

log pd(n) ≤ Cn1/2 + Cnd/(d+1) + Cn(d−1)/(d+1)

≤ Cnd/(d+1).
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